MakeItFrom.com
Menu (ESC)

C15900 Copper vs. S42035 Stainless Steel

C15900 copper belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C15900 copper and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.5
18
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 95
76
Shear Modulus, GPa 43
77
Shear Strength, MPa 420
390
Tensile Strength: Ultimate (UTS), MPa 720
630
Tensile Strength: Yield (Proof), MPa 240
430

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
810
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 280
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 49
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.4
Embodied Energy, MJ/kg 45
34
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
460
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 80
7.2
Thermal Shock Resistance, points 26
22

Alloy Composition

Aluminum (Al), % 0.76 to 0.84
0
Carbon (C), % 0.27 to 0.33
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 97.5 to 97.9
0
Iron (Fe), % 0 to 0.040
78.1 to 85
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Oxygen (O), % 0.4 to 0.54
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.66 to 0.74
0.3 to 0.5