MakeItFrom.com
Menu (ESC)

C16200 Copper vs. EN 1.4110 Stainless Steel

C16200 copper belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 56
11 to 14
Fatigue Strength, MPa 100 to 210
250 to 730
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 190 to 390
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 240 to 550
770 to 1720
Tensile Strength: Yield (Proof), MPa 48 to 470
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 370
790
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 360
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
8.0
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 41
33
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
480 to 4550
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.4 to 17
28 to 62
Strength to Weight: Bending, points 9.6 to 17
24 to 41
Thermal Diffusivity, mm2/s 100
8.1
Thermal Shock Resistance, points 8.7 to 20
27 to 60

Alloy Composition

Cadmium (Cd), % 0.7 to 1.2
0
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 98.6 to 99.3
0
Iron (Fe), % 0 to 0.2
81.4 to 86
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0 to 0.15