MakeItFrom.com
Menu (ESC)

C16200 Copper vs. CC496K Bronze

Both C16200 copper and CC496K bronze are copper alloys. They have 76% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
97
Elongation at Break, % 2.0 to 56
8.6
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
36
Tensile Strength: Ultimate (UTS), MPa 240 to 550
210
Tensile Strength: Yield (Proof), MPa 48 to 470
99

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 370
140
Melting Completion (Liquidus), °C 1080
900
Melting Onset (Solidus), °C 1030
820
Specific Heat Capacity, J/kg-K 380
340
Thermal Conductivity, W/m-K 360
52
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
11
Electrical Conductivity: Equal Weight (Specific), % IACS 90
11

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 9.0
9.2
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 41
52
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
15
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
50
Stiffness to Weight: Axial, points 7.2
5.9
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 7.4 to 17
6.5
Strength to Weight: Bending, points 9.6 to 17
8.6
Thermal Diffusivity, mm2/s 100
17
Thermal Shock Resistance, points 8.7 to 20
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Cadmium (Cd), % 0.7 to 1.2
0
Copper (Cu), % 98.6 to 99.3
72 to 79.5
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0