MakeItFrom.com
Menu (ESC)

C16200 Copper vs. C42600 Brass

Both C16200 copper and C42600 brass are copper alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 56
1.1 to 40
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Shear Strength, MPa 190 to 390
280 to 470
Tensile Strength: Ultimate (UTS), MPa 240 to 550
410 to 830
Tensile Strength: Yield (Proof), MPa 48 to 470
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 370
180
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1030
1010
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 360
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
25
Electrical Conductivity: Equal Weight (Specific), % IACS 90
26

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
48
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
230 to 2970
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 7.4 to 17
13 to 27
Strength to Weight: Bending, points 9.6 to 17
14 to 23
Thermal Diffusivity, mm2/s 100
33
Thermal Shock Resistance, points 8.7 to 20
15 to 29

Alloy Composition

Cadmium (Cd), % 0.7 to 1.2
0
Copper (Cu), % 98.6 to 99.3
87 to 90
Iron (Fe), % 0 to 0.2
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Nickel (Ni), % 0
0.050 to 0.2
Phosphorus (P), % 0
0.020 to 0.050
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2

Comparable Variants