MakeItFrom.com
Menu (ESC)

C16200 Copper vs. C85400 Brass

Both C16200 copper and C85400 brass are copper alloys. They have 68% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16200 copper and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 2.0 to 56
23
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 240 to 550
220
Tensile Strength: Yield (Proof), MPa 48 to 470
85

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 370
130
Melting Completion (Liquidus), °C 1080
940
Melting Onset (Solidus), °C 1030
940
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 360
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 90
20
Electrical Conductivity: Equal Weight (Specific), % IACS 90
22

Otherwise Unclassified Properties

Base Metal Price, % relative 30
25
Density, g/cm3 9.0
8.3
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 99
40
Resilience: Unit (Modulus of Resilience), kJ/m3 10 to 970
35
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 7.4 to 17
7.5
Strength to Weight: Bending, points 9.6 to 17
9.9
Thermal Diffusivity, mm2/s 100
28
Thermal Shock Resistance, points 8.7 to 20
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Cadmium (Cd), % 0.7 to 1.2
0
Copper (Cu), % 98.6 to 99.3
65 to 70
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.050
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1