MakeItFrom.com
Menu (ESC)

C16500 Copper vs. ASTM A202 Steel

C16500 copper belongs to the copper alloys classification, while ASTM A202 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is ASTM A202 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.5 to 53
17 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 200 to 310
360 to 410
Tensile Strength: Ultimate (UTS), MPa 280 to 530
590 to 670
Tensile Strength: Yield (Proof), MPa 97 to 520
350 to 360

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 340
410
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 250
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 42
19
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
93 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
330 to 350
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.6 to 17
21 to 24
Strength to Weight: Bending, points 11 to 16
20 to 22
Thermal Diffusivity, mm2/s 74
14
Thermal Shock Resistance, points 9.8 to 19
17 to 20

Comparable Variants