MakeItFrom.com
Menu (ESC)

C16500 Copper vs. EN 1.4646 Stainless Steel

C16500 copper belongs to the copper alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.5 to 53
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 200 to 310
500
Tensile Strength: Ultimate (UTS), MPa 280 to 530
750
Tensile Strength: Yield (Proof), MPa 97 to 520
430

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 340
910
Melting Completion (Liquidus), °C 1070
1390
Melting Onset (Solidus), °C 1010
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
460
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
27
Strength to Weight: Bending, points 11 to 16
24
Thermal Shock Resistance, points 9.8 to 19
16

Alloy Composition

Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 97.8 to 98.9
1.5 to 3.0
Iron (Fe), % 0 to 0.020
59 to 67.3
Manganese (Mn), % 0
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.7
0
Residuals, % 0 to 0.5
0