MakeItFrom.com
Menu (ESC)

C16500 Copper vs. EN 1.6982 Stainless Steel

C16500 copper belongs to the copper alloys classification, while EN 1.6982 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is EN 1.6982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.5 to 53
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 280 to 530
800
Tensile Strength: Yield (Proof), MPa 97 to 520
570

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 340
770
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 250
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 61
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 42
33
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
820
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
28
Strength to Weight: Bending, points 11 to 16
25
Thermal Diffusivity, mm2/s 74
6.6
Thermal Shock Resistance, points 9.8 to 19
29

Alloy Composition

Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
78.7 to 84.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.7
0
Residuals, % 0 to 0.5
0