MakeItFrom.com
Menu (ESC)

C16500 Copper vs. EN 1.7376 Steel

C16500 copper belongs to the copper alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.5 to 53
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 280 to 530
710
Tensile Strength: Yield (Proof), MPa 97 to 520
460

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 340
600
Melting Completion (Liquidus), °C 1070
1460
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 250
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.1
Embodied Energy, MJ/kg 42
29
Embodied Water, L/kg 320
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
560
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.6 to 17
25
Strength to Weight: Bending, points 11 to 16
23
Thermal Diffusivity, mm2/s 74
6.9
Thermal Shock Resistance, points 9.8 to 19
20

Alloy Composition

Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 97.8 to 98.9
0 to 0.3
Iron (Fe), % 0 to 0.020
86.2 to 90.6
Manganese (Mn), % 0
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 0.7
0
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.5
0