MakeItFrom.com
Menu (ESC)

C16500 Copper vs. CC380H Copper-nickel

Both C16500 copper and CC380H copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 1.5 to 53
26
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
47
Tensile Strength: Ultimate (UTS), MPa 280 to 530
310
Tensile Strength: Yield (Proof), MPa 97 to 520
120

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1070
1130
Melting Onset (Solidus), °C 1010
1080
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 250
46
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
11
Electrical Conductivity: Equal Weight (Specific), % IACS 61
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.8
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
59
Stiffness to Weight: Axial, points 7.1
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.6 to 17
9.8
Strength to Weight: Bending, points 11 to 16
12
Thermal Diffusivity, mm2/s 74
13
Thermal Shock Resistance, points 9.8 to 19
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
84.5 to 89
Iron (Fe), % 0 to 0.020
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0.5 to 0.7
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0