MakeItFrom.com
Menu (ESC)

C16500 Copper vs. CC490K Brass

Both C16500 copper and CC490K brass are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 1.5 to 53
15
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 280 to 530
230
Tensile Strength: Yield (Proof), MPa 97 to 520
110

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1070
980
Melting Onset (Solidus), °C 1010
910
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 250
72
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
16
Electrical Conductivity: Equal Weight (Specific), % IACS 61
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 320
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
28
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
54
Stiffness to Weight: Axial, points 7.1
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.6 to 17
7.3
Strength to Weight: Bending, points 11 to 16
9.5
Thermal Diffusivity, mm2/s 74
22
Thermal Shock Resistance, points 9.8 to 19
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
81 to 86
Iron (Fe), % 0 to 0.020
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0.5 to 0.7
2.0 to 3.5
Zinc (Zn), % 0
7.0 to 9.5
Residuals, % 0 to 0.5
0