MakeItFrom.com
Menu (ESC)

C16500 Copper vs. C52400 Bronze

Both C16500 copper and C52400 bronze are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 67 to 73
54 to 84
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 280 to 530
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1070
1000
Melting Onset (Solidus), °C 1010
840
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 250
50
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
11
Electrical Conductivity: Equal Weight (Specific), % IACS 61
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.6
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 320
390

Common Calculations

Stiffness to Weight: Axial, points 7.1
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.6 to 17
14 to 28
Strength to Weight: Bending, points 11 to 16
15 to 23
Thermal Diffusivity, mm2/s 74
15
Thermal Shock Resistance, points 9.8 to 19
17 to 32

Alloy Composition

Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
87.8 to 91
Iron (Fe), % 0 to 0.020
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0.5 to 0.7
9.0 to 11
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5

Comparable Variants