MakeItFrom.com
Menu (ESC)

C16500 Copper vs. C99500 Copper

Both C16500 copper and C99500 copper are copper alloys. They have 87% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 1.5 to 53
13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 280 to 530
540
Tensile Strength: Yield (Proof), MPa 97 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 340
210
Melting Completion (Liquidus), °C 1070
1090
Melting Onset (Solidus), °C 1010
1040
Specific Heat Capacity, J/kg-K 380
400
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
10
Electrical Conductivity: Equal Weight (Specific), % IACS 61
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
410
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.6 to 17
17
Strength to Weight: Bending, points 11 to 16
17
Thermal Shock Resistance, points 9.8 to 19
19

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
82.5 to 92
Iron (Fe), % 0 to 0.020
3.0 to 5.0
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 5.5
Silicon (Si), % 0
0.5 to 2.0
Tin (Sn), % 0.5 to 0.7
0
Zinc (Zn), % 0
0.5 to 2.0
Residuals, % 0
0 to 0.3