MakeItFrom.com
Menu (ESC)

C16500 Copper vs. R30155 Cobalt

C16500 copper belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C16500 copper and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 1.5 to 53
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
81
Shear Strength, MPa 200 to 310
570
Tensile Strength: Ultimate (UTS), MPa 280 to 530
850
Tensile Strength: Yield (Proof), MPa 97 to 520
390

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
9.7
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.8 to 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1160
370
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.6 to 17
28
Strength to Weight: Bending, points 11 to 16
24
Thermal Diffusivity, mm2/s 74
3.2
Thermal Shock Resistance, points 9.8 to 19
21

Alloy Composition

Cadmium (Cd), % 0.6 to 1.0
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 97.8 to 98.9
0
Iron (Fe), % 0 to 0.020
24.3 to 36.2
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tin (Sn), % 0.5 to 0.7
0
Tungsten (W), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0