MakeItFrom.com
Menu (ESC)

C17000 Copper vs. C11100 Copper

Both C17000 copper and C11100 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.1 to 31
1.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
44
Shear Strength, MPa 320 to 750
230
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
460
Tensile Strength: Yield (Proof), MPa 160 to 1140
420

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 980
1080
Melting Onset (Solidus), °C 870
1070
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
100
Electrical Conductivity: Equal Weight (Specific), % IACS 22
100

Otherwise Unclassified Properties

Density, g/cm3 8.8
9.0
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
750
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15 to 41
14
Strength to Weight: Bending, points 16 to 30
15
Thermal Diffusivity, mm2/s 32
110
Thermal Shock Resistance, points 17 to 45
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
99.9 to 100
Iron (Fe), % 0 to 0.4
0
Nickel (Ni), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.2
0
Residuals, % 0
0 to 0.1