MakeItFrom.com
Menu (ESC)

C17000 Copper vs. C34000 Brass

Both C17000 copper and C34000 brass are copper alloys. They have 64% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is C34000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 230
170
Maximum Temperature: Mechanical, °C 270
120
Melting Completion (Liquidus), °C 980
930
Melting Onset (Solidus), °C 870
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
26
Electrical Conductivity: Equal Weight (Specific), % IACS 22
29

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 310
320

Common Calculations

Stiffness to Weight: Axial, points 7.6
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 15 to 41
11 to 22
Strength to Weight: Bending, points 16 to 30
13 to 21
Thermal Diffusivity, mm2/s 32
37
Thermal Shock Resistance, points 17 to 45
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Copper (Cu), % 96.3 to 98.2
62 to 65
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0.8 to 1.5
Nickel (Ni), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.2
0
Zinc (Zn), % 0
33 to 37.2
Residuals, % 0
0 to 0.4