MakeItFrom.com
Menu (ESC)

C17000 Copper vs. N06007 Nickel

C17000 copper belongs to the copper alloys classification, while N06007 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 31
38
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
79
Shear Strength, MPa 320 to 750
470
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
690
Tensile Strength: Yield (Proof), MPa 160 to 1140
260

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 270
990
Melting Completion (Liquidus), °C 980
1340
Melting Onset (Solidus), °C 870
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 8.7
10
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
170
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 41
23
Strength to Weight: Bending, points 16 to 30
21
Thermal Diffusivity, mm2/s 32
2.7
Thermal Shock Resistance, points 17 to 45
18

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 96.3 to 98.2
1.5 to 2.5
Iron (Fe), % 0 to 0.4
18 to 21
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0.2 to 0.6
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Residuals, % 0 to 0.5
0