MakeItFrom.com
Menu (ESC)

C17000 Copper vs. N06200 Nickel

C17000 copper belongs to the copper alloys classification, while N06200 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 1.1 to 31
51
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
84
Shear Strength, MPa 320 to 750
560
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
780
Tensile Strength: Yield (Proof), MPa 160 to 1140
320

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 270
990
Melting Completion (Liquidus), °C 980
1500
Melting Onset (Solidus), °C 870
1450
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 110
9.1
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 22
1.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 8.7
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
320
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
240
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 41
25
Strength to Weight: Bending, points 16 to 30
22
Thermal Diffusivity, mm2/s 32
2.4
Thermal Shock Resistance, points 17 to 45
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.5
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 96.3 to 98.2
1.3 to 1.9
Iron (Fe), % 0 to 0.4
0 to 3.0
Manganese (Mn), % 0
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0.2 to 0.6
51 to 61.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.080
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0