MakeItFrom.com
Menu (ESC)

C17000 Copper vs. N06650 Nickel

C17000 copper belongs to the copper alloys classification, while N06650 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.1 to 31
50
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
82
Shear Strength, MPa 320 to 750
640
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
900
Tensile Strength: Yield (Proof), MPa 160 to 1140
460

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 270
980
Melting Completion (Liquidus), °C 980
1500
Melting Onset (Solidus), °C 870
1450
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 8.7
10
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
380
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
490
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 41
29
Strength to Weight: Bending, points 16 to 30
24
Thermal Shock Resistance, points 17 to 45
24

Alloy Composition

Aluminum (Al), % 0 to 0.2
0.050 to 0.5
Beryllium (Be), % 1.6 to 1.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 96.3 to 98.2
0 to 0.3
Iron (Fe), % 0 to 0.4
12 to 16
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0.2 to 0.6
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
0.5 to 2.5
Residuals, % 0 to 0.5
0