MakeItFrom.com
Menu (ESC)

C17000 Copper vs. S31060 Stainless Steel

C17000 copper belongs to the copper alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C17000 copper and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 31
46
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 45
78
Shear Strength, MPa 320 to 750
480
Tensile Strength: Ultimate (UTS), MPa 490 to 1310
680
Tensile Strength: Yield (Proof), MPa 160 to 1140
310

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 270
1080
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 22
2.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.7
3.4
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 390
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5420
250
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 41
24
Strength to Weight: Bending, points 16 to 30
22
Thermal Diffusivity, mm2/s 32
4.0
Thermal Shock Resistance, points 17 to 45
15

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.6 to 1.8
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 96.3 to 98.2
0
Iron (Fe), % 0 to 0.4
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.2 to 0.6
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0