MakeItFrom.com
Menu (ESC)

C17200 Copper vs. ASTM Grade HG10 MNN Steel

C17200 copper belongs to the copper alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 37
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
590
Tensile Strength: Yield (Proof), MPa 160 to 1250
250

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 280
990
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 870
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 23
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
4.0
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 500
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5720
160
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 44
21
Strength to Weight: Bending, points 16 to 31
20
Thermal Diffusivity, mm2/s 31
3.9
Thermal Shock Resistance, points 16 to 46
13

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 96.1 to 98
0 to 0.5
Iron (Fe), % 0 to 0.4
57.9 to 66.5
Manganese (Mn), % 0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0.2 to 0.6
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0