MakeItFrom.com
Menu (ESC)

C17200 Copper vs. AWS E320

C17200 copper belongs to the copper alloys classification, while AWS E320 belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.1 to 37
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
620

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Melting Completion (Liquidus), °C 980
1410
Melting Onset (Solidus), °C 870
1360
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 9.4
6.5
Embodied Energy, MJ/kg 150
91
Embodied Water, L/kg 310
220

Common Calculations

Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 15 to 44
21
Strength to Weight: Bending, points 16 to 31
20
Thermal Shock Resistance, points 16 to 46
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 96.1 to 98
3.0 to 4.0
Iron (Fe), % 0 to 0.4
31.8 to 43.5
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.2 to 0.6
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0