MakeItFrom.com
Menu (ESC)

C17200 Copper vs. CC484K Bronze

Both C17200 copper and CC484K bronze are copper alloys. They have 87% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17200 copper and the bottom bar is CC484K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.1 to 37
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 480 to 1380
330
Tensile Strength: Yield (Proof), MPa 160 to 1250
200

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 280
170
Melting Completion (Liquidus), °C 980
1000
Melting Onset (Solidus), °C 870
870
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 110
70
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 23
9.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 9.4
3.9
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 310
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 500
32
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5720
180
Stiffness to Weight: Axial, points 7.6
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 15 to 44
10
Strength to Weight: Bending, points 16 to 31
12
Thermal Diffusivity, mm2/s 31
22
Thermal Shock Resistance, points 16 to 46
12

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 96.1 to 98
84.5 to 87.5
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0.2 to 0.6
1.5 to 2.5
Phosphorus (P), % 0
0.050 to 0.4
Silicon (Si), % 0 to 0.2
0 to 0.010
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
11 to 13
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0 to 0.5
0