MakeItFrom.com
Menu (ESC)

C17300 Copper vs. AISI 431 Stainless Steel

C17300 copper belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 23
15 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Shear Strength, MPa 320 to 790
550 to 840
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
890 to 1380
Tensile Strength: Yield (Proof), MPa 160 to 1200
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 270
850
Melting Completion (Liquidus), °C 980
1510
Melting Onset (Solidus), °C 870
1450
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 23
3.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 9.4
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
1270 to 2770
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 44
32 to 50
Strength to Weight: Bending, points 16 to 31
27 to 36
Thermal Diffusivity, mm2/s 32
7.0
Thermal Shock Resistance, points 17 to 48
28 to 43

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 95.5 to 97.8
0
Iron (Fe), % 0 to 0.4
78.2 to 83.8
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.2 to 0.6
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0