MakeItFrom.com
Menu (ESC)

C17300 Copper vs. EN 1.0477 Steel

C17300 copper belongs to the copper alloys classification, while EN 1.0477 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is EN 1.0477 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 23
24
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 320 to 790
280
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
440
Tensile Strength: Yield (Proof), MPa 160 to 1200
230

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 23
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
90
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
150
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 44
16
Strength to Weight: Bending, points 16 to 31
16
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 17 to 48
14

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.060
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 95.5 to 97.8
0 to 0.2
Iron (Fe), % 0 to 0.4
96.9 to 99.4
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0.2 to 0.6
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.5
0