MakeItFrom.com
Menu (ESC)

C17300 Copper vs. EN 1.1165 Cast Steel

C17300 copper belongs to the copper alloys classification, while EN 1.1165 cast steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is EN 1.1165 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 23
11 to 20
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
600 to 780
Tensile Strength: Yield (Proof), MPa 160 to 1200
290 to 620

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 23
8.9

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
81 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
230 to 1010
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 44
21 to 28
Strength to Weight: Bending, points 16 to 31
20 to 24
Thermal Diffusivity, mm2/s 32
14
Thermal Shock Resistance, points 17 to 48
19 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0.25 to 0.32
Copper (Cu), % 95.5 to 97.8
0
Iron (Fe), % 0 to 0.4
97.2 to 98.6
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
1.2 to 1.8
Nickel (Ni), % 0.2 to 0.6
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0

Comparable Variants