MakeItFrom.com
Menu (ESC)

C17300 Copper vs. EN 1.4547 Stainless Steel

C17300 copper belongs to the copper alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 23
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
80
Shear Strength, MPa 320 to 790
510
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
750
Tensile Strength: Yield (Proof), MPa 160 to 1200
340

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 270
1090
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 23
2.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 9.4
5.6
Embodied Energy, MJ/kg 150
75
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
240
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
290
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 44
26
Strength to Weight: Bending, points 16 to 31
23
Thermal Diffusivity, mm2/s 32
3.8
Thermal Shock Resistance, points 17 to 48
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 95.5 to 97.8
0.5 to 1.0
Iron (Fe), % 0 to 0.4
51 to 56.3
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0.2 to 0.6
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0