C17300 Copper vs. EN 1.4612 Stainless Steel
C17300 copper belongs to the copper alloys classification, while EN 1.4612 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.
For each property being compared, the top bar is C17300 copper and the bottom bar is EN 1.4612 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
190 |
Elongation at Break, % | 3.0 to 23 | |
11 |
Poisson's Ratio | 0.33 | |
0.28 |
Shear Modulus, GPa | 45 | |
76 |
Shear Strength, MPa | 320 to 790 | |
1010 to 1110 |
Tensile Strength: Ultimate (UTS), MPa | 500 to 1380 | |
1690 to 1850 |
Tensile Strength: Yield (Proof), MPa | 160 to 1200 | |
1570 to 1730 |
Thermal Properties
Latent Heat of Fusion, J/g | 230 | |
280 |
Maximum Temperature: Mechanical, °C | 270 | |
790 |
Melting Completion (Liquidus), °C | 980 | |
1450 |
Melting Onset (Solidus), °C | 870 | |
1400 |
Specific Heat Capacity, J/kg-K | 380 | |
480 |
Thermal Expansion, µm/m-K | 17 | |
11 |
Otherwise Unclassified Properties
Density, g/cm3 | 8.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 9.4 | |
3.6 |
Embodied Energy, MJ/kg | 150 | |
50 |
Embodied Water, L/kg | 310 | |
140 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 40 to 88 | |
190 to 210 |
Stiffness to Weight: Axial, points | 7.6 | |
14 |
Stiffness to Weight: Bending, points | 19 | |
25 |
Strength to Weight: Axial, points | 16 to 44 | |
60 to 65 |
Strength to Weight: Bending, points | 16 to 31 | |
40 to 43 |
Thermal Shock Resistance, points | 17 to 48 | |
58 to 63 |
Alloy Composition
Aluminum (Al), % | 0 to 0.2 | |
1.4 to 1.8 |
Beryllium (Be), % | 1.8 to 2.0 | |
0 |
Carbon (C), % | 0 | |
0 to 0.015 |
Chromium (Cr), % | 0 | |
11 to 12.5 |
Copper (Cu), % | 95.5 to 97.8 | |
0 |
Iron (Fe), % | 0 to 0.4 | |
71.5 to 75.5 |
Lead (Pb), % | 0.2 to 0.6 | |
0 |
Manganese (Mn), % | 0 | |
0 to 0.1 |
Molybdenum (Mo), % | 0 | |
1.8 to 2.3 |
Nickel (Ni), % | 0.2 to 0.6 | |
10.2 to 11.3 |
Nitrogen (N), % | 0 | |
0 to 0.010 |
Phosphorus (P), % | 0 | |
0 to 0.010 |
Silicon (Si), % | 0 to 0.2 | |
0 to 0.1 |
Sulfur (S), % | 0 | |
0 to 0.0050 |
Titanium (Ti), % | 0 | |
0.2 to 0.5 |
Residuals, % | 0 to 0.5 | |
0 |