MakeItFrom.com
Menu (ESC)

C17300 Copper vs. CC332G Bronze

Both C17300 copper and CC332G bronze are copper alloys. They have 84% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 3.0 to 23
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
620
Tensile Strength: Yield (Proof), MPa 160 to 1200
250

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 270
220
Melting Completion (Liquidus), °C 980
1060
Melting Onset (Solidus), °C 870
1010
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 110
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 23
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 9.4
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
270
Stiffness to Weight: Axial, points 7.6
7.7
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 16 to 44
21
Strength to Weight: Bending, points 16 to 31
19
Thermal Diffusivity, mm2/s 32
12
Thermal Shock Resistance, points 17 to 48
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
8.5 to 10.5
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 95.5 to 97.8
80 to 86
Iron (Fe), % 0 to 0.4
1.0 to 3.0
Lead (Pb), % 0.2 to 0.6
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.2 to 0.6
1.5 to 4.0
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0