MakeItFrom.com
Menu (ESC)

C17300 Copper vs. CC480K Bronze

Both C17300 copper and CC480K bronze are copper alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.0 to 23
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
300
Tensile Strength: Yield (Proof), MPa 160 to 1200
180

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
170
Melting Completion (Liquidus), °C 980
1010
Melting Onset (Solidus), °C 870
900
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 110
63
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 23
11

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
35
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
140
Stiffness to Weight: Axial, points 7.6
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 44
9.6
Strength to Weight: Bending, points 16 to 31
11
Thermal Diffusivity, mm2/s 32
20
Thermal Shock Resistance, points 17 to 48
11

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 95.5 to 97.8
86 to 90
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0.2 to 0.6
0 to 1.0
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0.2 to 0.6
0 to 2.0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0 to 0.020
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0