MakeItFrom.com
Menu (ESC)

C17300 Copper vs. SAE-AISI 1065 Steel

C17300 copper belongs to the copper alloys classification, while SAE-AISI 1065 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 23
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
72
Shear Strength, MPa 320 to 790
430 to 470
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
710 to 780
Tensile Strength: Yield (Proof), MPa 160 to 1200
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
11
Electrical Conductivity: Equal Weight (Specific), % IACS 23
12

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 9.4
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
490 to 820
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 44
25 to 28
Strength to Weight: Bending, points 16 to 31
23 to 24
Thermal Diffusivity, mm2/s 32
14
Thermal Shock Resistance, points 17 to 48
25 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Carbon (C), % 0
0.6 to 0.7
Copper (Cu), % 95.5 to 97.8
0
Iron (Fe), % 0 to 0.4
98.3 to 98.8
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0.2 to 0.6
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.5
0