MakeItFrom.com
Menu (ESC)

C17300 Copper vs. C52100 Bronze

Both C17300 copper and C52100 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 270
180
Melting Completion (Liquidus), °C 980
1030
Melting Onset (Solidus), °C 870
880
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 110
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
13
Electrical Conductivity: Equal Weight (Specific), % IACS 23
13

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 9.4
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 310
370

Common Calculations

Stiffness to Weight: Axial, points 7.6
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 44
12 to 25
Strength to Weight: Bending, points 16 to 31
13 to 22
Thermal Diffusivity, mm2/s 32
19
Thermal Shock Resistance, points 17 to 48
14 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 95.5 to 97.8
89.8 to 93
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0.2 to 0.6
0 to 0.050
Nickel (Ni), % 0.2 to 0.6
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5