MakeItFrom.com
Menu (ESC)

C17300 Copper vs. C69700 Brass

Both C17300 copper and C69700 brass are copper alloys. They have 78% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 3.0 to 23
25
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 45
41
Shear Strength, MPa 320 to 790
300
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
470
Tensile Strength: Yield (Proof), MPa 160 to 1200
230

Thermal Properties

Latent Heat of Fusion, J/g 230
240
Maximum Temperature: Mechanical, °C 270
160
Melting Completion (Liquidus), °C 980
930
Melting Onset (Solidus), °C 870
880
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 110
43
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 9.4
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
99
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
250
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 16 to 44
16
Strength to Weight: Bending, points 16 to 31
16
Thermal Diffusivity, mm2/s 32
13
Thermal Shock Resistance, points 17 to 48
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 1.8 to 2.0
0
Copper (Cu), % 95.5 to 97.8
75 to 80
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0.2 to 0.6
0.5 to 1.5
Manganese (Mn), % 0
0 to 0.4
Nickel (Ni), % 0.2 to 0.6
0
Silicon (Si), % 0 to 0.2
2.5 to 3.5
Zinc (Zn), % 0
13.9 to 22
Residuals, % 0
0 to 0.5