MakeItFrom.com
Menu (ESC)

C17300 Copper vs. N07752 Nickel

C17300 copper belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17300 copper and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 23
22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Shear Strength, MPa 320 to 790
710
Tensile Strength: Ultimate (UTS), MPa 500 to 1380
1120
Tensile Strength: Yield (Proof), MPa 160 to 1200
740

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 270
960
Melting Completion (Liquidus), °C 980
1380
Melting Onset (Solidus), °C 870
1330
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 23
1.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 9.4
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40 to 88
220
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 5410
1450
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 44
37
Strength to Weight: Bending, points 16 to 31
29
Thermal Diffusivity, mm2/s 32
3.2
Thermal Shock Resistance, points 17 to 48
34

Alloy Composition

Aluminum (Al), % 0 to 0.2
0.4 to 1.0
Beryllium (Be), % 1.8 to 2.0
0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 95.5 to 97.8
0 to 0.5
Iron (Fe), % 0 to 0.4
5.0 to 9.0
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.2 to 0.6
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.5
0