MakeItFrom.com
Menu (ESC)

C17465 Copper vs. EN 1.1133 Steel

C17465 copper belongs to the copper alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.3 to 36
19 to 24
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 210 to 540
370 to 380
Tensile Strength: Ultimate (UTS), MPa 310 to 930
580 to 620
Tensile Strength: Yield (Proof), MPa 120 to 830
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 220
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 51
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 52
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 45
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.5
Embodied Energy, MJ/kg 64
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
270 to 550
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 29
21 to 22
Strength to Weight: Bending, points 11 to 24
20 to 21
Thermal Diffusivity, mm2/s 64
13
Thermal Shock Resistance, points 11 to 33
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.15 to 0.5
0
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 95.7 to 98.7
0
Iron (Fe), % 0 to 0.2
96.9 to 98.8
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 1.4
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0 to 0.5
0