MakeItFrom.com
Menu (ESC)

C17465 Copper vs. C96900 Copper-nickel

Both C17465 copper and C96900 copper-nickel are copper alloys. They have 78% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 5.3 to 36
4.5
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 310 to 930
850
Tensile Strength: Yield (Proof), MPa 120 to 830
830

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 210
210
Melting Completion (Liquidus), °C 1080
1060
Melting Onset (Solidus), °C 1030
960
Specific Heat Capacity, J/kg-K 390
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 51
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 52
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 45
39
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 4.1
4.6
Embodied Energy, MJ/kg 64
72
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
38
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
2820
Stiffness to Weight: Axial, points 7.3
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 29
27
Strength to Weight: Bending, points 11 to 24
23
Thermal Shock Resistance, points 11 to 33
30

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.15 to 0.5
0
Copper (Cu), % 95.7 to 98.7
73.6 to 78
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 0.2 to 0.6
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 1.0 to 1.4
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.2
0 to 0.3
Tin (Sn), % 0 to 0.25
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0
0 to 0.5