MakeItFrom.com
Menu (ESC)

C17465 Copper vs. N06219 Nickel

C17465 copper belongs to the copper alloys classification, while N06219 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C17465 copper and the bottom bar is N06219 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.3 to 36
48
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
79
Shear Strength, MPa 210 to 540
520
Tensile Strength: Ultimate (UTS), MPa 310 to 930
730
Tensile Strength: Yield (Proof), MPa 120 to 830
300

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 220
10
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 51
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 52
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 45
60
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 4.1
11
Embodied Energy, MJ/kg 64
140
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 90
280
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2920
230
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 29
24
Strength to Weight: Bending, points 11 to 24
21
Thermal Diffusivity, mm2/s 64
2.7
Thermal Shock Resistance, points 11 to 33
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.5
Beryllium (Be), % 0.15 to 0.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
18 to 22
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 95.7 to 98.7
0 to 0.5
Iron (Fe), % 0 to 0.2
2.0 to 4.0
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.0 to 9.0
Nickel (Ni), % 1.0 to 1.4
60.8 to 72.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0.7 to 1.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.25
0
Titanium (Ti), % 0
0 to 0.5
Zirconium (Zr), % 0 to 0.5
0
Residuals, % 0 to 0.5
0