MakeItFrom.com
Menu (ESC)

C17500 Copper vs. AWS E80C-B6

C17500 copper belongs to the copper alloys classification, while AWS E80C-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
74
Tensile Strength: Ultimate (UTS), MPa 310 to 860
630
Tensile Strength: Yield (Proof), MPa 170 to 760
530

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 60
4.7
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.7
1.8
Embodied Energy, MJ/kg 73
25
Embodied Water, L/kg 320
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
730
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
22
Strength to Weight: Bending, points 11 to 23
21
Thermal Diffusivity, mm2/s 59
11
Thermal Shock Resistance, points 11 to 29
18

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
4.5 to 6.0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0 to 0.35
Iron (Fe), % 0 to 0.1
90.1 to 94.4
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0.25 to 0.6
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5