MakeItFrom.com
Menu (ESC)

C17500 Copper vs. CC330G Bronze

Both C17500 copper and CC330G bronze are copper alloys. They have 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 6.0 to 30
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
42
Tensile Strength: Ultimate (UTS), MPa 310 to 860
530
Tensile Strength: Yield (Proof), MPa 170 to 760
190

Thermal Properties

Latent Heat of Fusion, J/g 220
230
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1060
1050
Melting Onset (Solidus), °C 1020
1000
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 200
62
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
14
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 4.7
3.2
Embodied Energy, MJ/kg 73
52
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
82
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
170
Stiffness to Weight: Axial, points 7.5
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 27
18
Strength to Weight: Bending, points 11 to 23
17
Thermal Diffusivity, mm2/s 59
17
Thermal Shock Resistance, points 11 to 29
19

Alloy Composition

Aluminum (Al), % 0 to 0.2
8.0 to 10.5
Beryllium (Be), % 0.4 to 0.7
0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
87 to 92
Iron (Fe), % 0 to 0.1
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0