MakeItFrom.com
Menu (ESC)

C17500 Copper vs. CC332G Bronze

Both C17500 copper and CC332G bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.0 to 30
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
43
Tensile Strength: Ultimate (UTS), MPa 310 to 860
620
Tensile Strength: Yield (Proof), MPa 170 to 760
250

Thermal Properties

Latent Heat of Fusion, J/g 220
230
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1060
1060
Melting Onset (Solidus), °C 1020
1010
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 200
45
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
11
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 4.7
3.4
Embodied Energy, MJ/kg 73
55
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
270
Stiffness to Weight: Axial, points 7.5
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.7 to 27
21
Strength to Weight: Bending, points 11 to 23
19
Thermal Diffusivity, mm2/s 59
12
Thermal Shock Resistance, points 11 to 29
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
8.5 to 10.5
Beryllium (Be), % 0.4 to 0.7
0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
80 to 86
Iron (Fe), % 0 to 0.1
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0