MakeItFrom.com
Menu (ESC)

C17500 Copper vs. Nickel 718

C17500 copper belongs to the copper alloys classification, while nickel 718 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
12 to 50
Fatigue Strength, MPa 170 to 310
460 to 760
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
75
Shear Strength, MPa 200 to 520
660 to 950
Tensile Strength: Ultimate (UTS), MPa 310 to 860
930 to 1530
Tensile Strength: Yield (Proof), MPa 170 to 760
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1060
1340
Melting Onset (Solidus), °C 1020
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 200
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 60
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 4.7
13
Embodied Energy, MJ/kg 73
190
Embodied Water, L/kg 320
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
660 to 4560
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 27
31 to 51
Strength to Weight: Bending, points 11 to 23
25 to 35
Thermal Diffusivity, mm2/s 59
3.0
Thermal Shock Resistance, points 11 to 29
27 to 44

Alloy Composition

Aluminum (Al), % 0 to 0.2
0.2 to 0.8
Beryllium (Be), % 0.4 to 0.7
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 2.4 to 2.7
0 to 1.0
Copper (Cu), % 95.6 to 97.2
0 to 0.3
Iron (Fe), % 0 to 0.1
11.1 to 24.6
Manganese (Mn), % 0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Residuals, % 0 to 0.5
0