MakeItFrom.com
Menu (ESC)

C17500 Copper vs. C96800 Copper

Both C17500 copper and C96800 copper are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.0 to 30
3.4
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 45
46
Tensile Strength: Ultimate (UTS), MPa 310 to 860
1010
Tensile Strength: Yield (Proof), MPa 170 to 760
860

Thermal Properties

Latent Heat of Fusion, J/g 220
220
Maximum Temperature: Mechanical, °C 220
220
Melting Completion (Liquidus), °C 1060
1120
Melting Onset (Solidus), °C 1020
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 200
52
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
10
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
10

Otherwise Unclassified Properties

Base Metal Price, % relative 60
34
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 4.7
3.4
Embodied Energy, MJ/kg 73
52
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
33
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
3000
Stiffness to Weight: Axial, points 7.5
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.7 to 27
32
Strength to Weight: Bending, points 11 to 23
25
Thermal Diffusivity, mm2/s 59
15
Thermal Shock Resistance, points 11 to 29
35

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Beryllium (Be), % 0.4 to 0.7
0
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
87.1 to 90.5
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.0025
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5