MakeItFrom.com
Menu (ESC)

C17500 Copper vs. S32803 Stainless Steel

C17500 copper belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 6.0 to 30
18
Fatigue Strength, MPa 170 to 310
350
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 38 to 99
86
Shear Modulus, GPa 45
81
Shear Strength, MPa 200 to 520
420
Tensile Strength: Ultimate (UTS), MPa 310 to 860
680
Tensile Strength: Yield (Proof), MPa 170 to 760
560

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
19
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 4.7
3.7
Embodied Energy, MJ/kg 73
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
760
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
25
Strength to Weight: Bending, points 11 to 23
22
Thermal Diffusivity, mm2/s 59
4.4
Thermal Shock Resistance, points 11 to 29
22

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
28 to 29
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
62.9 to 67.1
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Residuals, % 0 to 0.5
0