MakeItFrom.com
Menu (ESC)

C17500 Copper vs. S41003 Stainless Steel

C17500 copper belongs to the copper alloys classification, while S41003 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C17500 copper and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.0 to 30
21
Fatigue Strength, MPa 170 to 310
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 45
76
Shear Strength, MPa 200 to 520
320
Tensile Strength: Ultimate (UTS), MPa 310 to 860
520
Tensile Strength: Yield (Proof), MPa 170 to 760
310

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 220
720
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 53
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 24 to 54
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 60
7.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.7
1.9
Embodied Energy, MJ/kg 73
27
Embodied Water, L/kg 320
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 2390
240
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
19
Strength to Weight: Bending, points 11 to 23
18
Thermal Diffusivity, mm2/s 59
7.2
Thermal Shock Resistance, points 11 to 29
19

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Cobalt (Co), % 2.4 to 2.7
0
Copper (Cu), % 95.6 to 97.2
0
Iron (Fe), % 0 to 0.1
83.4 to 89.5
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0