MakeItFrom.com
Menu (ESC)

C17510 Copper vs. ACI-ASTM CB30 Steel

C17510 copper belongs to the copper alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 310 to 860
500
Tensile Strength: Yield (Proof), MPa 120 to 750
230

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 220
940
Melting Completion (Liquidus), °C 1070
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 49
10
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 4.2
2.3
Embodied Energy, MJ/kg 65
33
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
18
Strength to Weight: Bending, points 11 to 23
18
Thermal Diffusivity, mm2/s 60
5.6
Thermal Shock Resistance, points 11 to 30
17

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
0 to 1.2
Iron (Fe), % 0 to 0.1
72.9 to 82
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.4 to 2.2
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0