MakeItFrom.com
Menu (ESC)

C17510 Copper vs. AISI 441 Stainless Steel

C17510 copper belongs to the copper alloys classification, while AISI 441 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is AISI 441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.4 to 37
23
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 44 to 99
77
Shear Modulus, GPa 44
77
Shear Strength, MPa 210 to 500
300
Tensile Strength: Ultimate (UTS), MPa 310 to 860
470
Tensile Strength: Yield (Proof), MPa 120 to 750
270

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 1070
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 210
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 49
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 4.2
2.8
Embodied Energy, MJ/kg 65
41
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
92
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
190
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 27
17
Strength to Weight: Bending, points 11 to 23
17
Thermal Diffusivity, mm2/s 60
6.1
Thermal Shock Resistance, points 11 to 30
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19.5
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
0
Iron (Fe), % 0 to 0.1
76 to 82.2
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.4 to 2.2
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.9
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.1 to 0.5
Residuals, % 0 to 0.5
0