MakeItFrom.com
Menu (ESC)

C17510 Copper vs. ASTM A387 Grade 21L Class 1

C17510 copper belongs to the copper alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.4 to 37
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 210 to 500
310
Tensile Strength: Ultimate (UTS), MPa 310 to 860
500
Tensile Strength: Yield (Proof), MPa 120 to 750
230

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
480
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 210
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 49
4.1
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 4.2
1.8
Embodied Energy, MJ/kg 65
23
Embodied Water, L/kg 310
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
84
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
140
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
18
Strength to Weight: Bending, points 11 to 23
18
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 11 to 30
14

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Beryllium (Be), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
0
Iron (Fe), % 0 to 0.1
94.4 to 96.1
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.4 to 2.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0