MakeItFrom.com
Menu (ESC)

C17510 Copper vs. EN 1.7729 Steel

C17510 copper belongs to the copper alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C17510 copper and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 5.4 to 37
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 210 to 500
560
Tensile Strength: Ultimate (UTS), MPa 310 to 860
910
Tensile Strength: Yield (Proof), MPa 120 to 750
750

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1070
1470
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 210
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22 to 54
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 23 to 54
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 49
3.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
3.3
Embodied Energy, MJ/kg 65
49
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 92
150
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 2410
1500
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.7 to 27
32
Strength to Weight: Bending, points 11 to 23
27
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 11 to 30
27

Alloy Composition

Aluminum (Al), % 0 to 0.2
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Beryllium (Be), % 0.2 to 0.6
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 95.9 to 98.4
0 to 0.2
Iron (Fe), % 0 to 0.1
94.8 to 97
Manganese (Mn), % 0
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.4 to 2.2
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Residuals, % 0 to 0.5
0