MakeItFrom.com
Menu (ESC)

C18100 Copper vs. EN 1.7383 Steel

C18100 copper belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.3
20 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
74
Shear Strength, MPa 300
350 to 380
Tensile Strength: Ultimate (UTS), MPa 510
560 to 610
Tensile Strength: Yield (Proof), MPa 460
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1020
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.9
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 43
23
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 900
240 to 420
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 16
20 to 22
Strength to Weight: Bending, points 16
19 to 20
Thermal Diffusivity, mm2/s 94
11
Thermal Shock Resistance, points 18
16 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0.4 to 1.2
2.0 to 2.5
Copper (Cu), % 98.7 to 99.49
0 to 0.3
Iron (Fe), % 0
94.3 to 96.6
Magnesium (Mg), % 0.030 to 0.060
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.5
0