MakeItFrom.com
Menu (ESC)

C18100 Copper vs. Grade 29 Titanium

C18100 copper belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C18100 copper and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.3
6.8 to 11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 47
40
Shear Strength, MPa 300
550 to 560
Tensile Strength: Ultimate (UTS), MPa 510
930 to 940
Tensile Strength: Yield (Proof), MPa 460
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1080
1610
Melting Onset (Solidus), °C 1020
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 320
7.3
Thermal Expansion, µm/m-K 17
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 80
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 81
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.7
39
Embodied Energy, MJ/kg 43
640
Embodied Water, L/kg 310
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 900
3420 to 3540
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 16
58 to 59
Strength to Weight: Bending, points 16
47 to 48
Thermal Diffusivity, mm2/s 94
2.9
Thermal Shock Resistance, points 18
68 to 69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.4 to 1.2
0
Copper (Cu), % 98.7 to 99.49
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.25
Magnesium (Mg), % 0.030 to 0.060
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Ruthenium (Ru), % 0
0.080 to 0.14
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0
0 to 0.4